Showing 1 - 10 of 1,683
This paper explains how the Gibbs sampler can be used to perform Bayesian inference on GARCH models. Although the Gibbs sampler is usually based on the analyti-cal knowledge of the full conditional posterior densities, such knowledge is not available in regression models with GARCH errors. We...
Persistent link: https://www.econbiz.de/10014197191
A Bayesian analysis is presented of a time series which is the sum of a stationary component with a smooth spectral density and a deterministic component consisting of a linear combination of a trend and periodic terms. The periodic terms may have known or unknown frequencies. The advantage of...
Persistent link: https://www.econbiz.de/10014029563
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...
Persistent link: https://www.econbiz.de/10011380176
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10011349180
Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance - but still mean reverting - behavior is commonly found with nonparametric estimates of the fractional...
Persistent link: https://www.econbiz.de/10011382237
A new version of the local scale model of Shephard (1994) is presented. Its features are identically distributed evolution equation disturbances, the incorporation of in-the-mean effects, and the incorporation of variance regressors. A Bayesian posterior simulator and a new simulation smoother...
Persistent link: https://www.econbiz.de/10013120871
A novel Bayesian method for inference in dynamic regression models is proposed where both the values of the regression coefficients and the importance of the variables are allowed to change over time. We focus on forecasting and so the parsimony of the model is important for good performance. A...
Persistent link: https://www.econbiz.de/10013091731
Financial time series often exhibit properties that depart from the usual assumptions of serial independence and normality. These include volatility clustering, heavy-tailedness and serial dependence. A voluminous literature on different approaches for modeling these empirical regularities has...
Persistent link: https://www.econbiz.de/10013072463
This book presents in detail methodologies for the Bayesian estimation of single-regime and regime-switching GARCH models. These models are widespread and essential tools in financial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique....
Persistent link: https://www.econbiz.de/10013156202
Many structural break and regime-switching models have been used with macroeconomic and financial data. In this paper, we develop an extremely flexible parametric model that accommodates virtually any of these specifications - and does so in a simple way that allows for straightforward Bayesian...
Persistent link: https://www.econbiz.de/10012730175