Showing 1 - 10 of 1,548
A simple shrinkage method is proposed to improve the performance of weighting estimators of the average treatment …, three different variants of a shrinkage method for the propensity scores are analyzed. The results of a comprehensive Monte …
Persistent link: https://www.econbiz.de/10010412049
It is well known that efficient estimation of average treatment effects can be obtained by the method of inverse propensity score weighting, using the estimated propensity score, even when the true one is known. When the true propensity score is unknown but parametric, it is conjectured from the...
Persistent link: https://www.econbiz.de/10012025779
Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, and/or non-mutually exclusive "treatments". Consider the linear regression of Y onto X in a subpopulation homogenous in...
Persistent link: https://www.econbiz.de/10011924562
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10011486511
Outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric estimates. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage point outliers...
Persistent link: https://www.econbiz.de/10012547410
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that...
Persistent link: https://www.econbiz.de/10011778870
Estimators of average treatment effects under unconfounded treatment assignment are known to become rather imprecise if there is limited overlap in the covariate distributions between the treatment groups. But such limited overlap can also have a detrimental effect on inference, and lead for...
Persistent link: https://www.econbiz.de/10010467806
Currently available asymptotic results in the literature suggest that matching estimators have higher variance than reweighting estimators. The extant literature comparing the finite sample properties of matching to specific reweighting estimators, however, has concluded that reweighting...
Persistent link: https://www.econbiz.de/10003809052
Matching estimators are widely used in statistical data analysis. However, the distribution of matching estimators has been derived only for particular cases (Abadie and Imbens, 2006). This article establishes a martingale representation for matching estimators. This representation allows the...
Persistent link: https://www.econbiz.de/10003826104
Generalized single-index models are natural extensions of linear models and circumvent the so-called curse of dimensionality. They are becoming increasingly popular in many scientific fields including biostatistics, medicine, economics and financial econometrics. Estimating and testing the model...
Persistent link: https://www.econbiz.de/10003893146