Showing 1 - 10 of 116
Persistent link: https://www.econbiz.de/10011349460
We develop uniformly valid confidence regions for a regression coefficient in a high-dimensional sparse LAD (least absolute deviation or median) regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s n of them are...
Persistent link: https://www.econbiz.de/10009747946
We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least absolute deviation/median regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s << n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental median regression estimator that assembles the optimal estimating equation from the output of the post l1-penalized median regression and post l1-penalized least squares in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of the median regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the proposed method does not. We then generalize our method to the case where p1 > n regression coefficients...</<>
Persistent link: https://www.econbiz.de/10010227487
We develop uniformly valid confidence regions for regression coefficients in a highdimensional sparse median regression model with homoscedastic errors. Our methods are based on a moment equation that is immunized against non-regular estimation of the nuisance part of the median regression...
Persistent link: https://www.econbiz.de/10010462672
Modern construction of uniform confidence bands for non-parametric densities (and other functions) often relies on the classical Smirnov-Bickel-Rosenblatt (SBR) condition; see, for example, Giné and Nickl (2010). This condition requires the existence of a limit distribution of an extreme value...
Persistent link: https://www.econbiz.de/10010226449
This paper develops a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating whole empirical processes in the sup-norm. We prove an abstract approximation theorem applicable to a wide...
Persistent link: https://www.econbiz.de/10011525808
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There are variety of economic applications where the problem of testing many moment in- equalities appears; a notable...
Persistent link: https://www.econbiz.de/10011525823
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There are a variety of economic applications where the problem of testing many moment in- equalities appears; a notable...
Persistent link: https://www.econbiz.de/10010459258
Persistent link: https://www.econbiz.de/10012111907
This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There is a variety of economic applications where solving this problem allows to carry out inference on causal and...
Persistent link: https://www.econbiz.de/10011919986