Showing 1 - 10 of 1,638
This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation....
Persistent link: https://www.econbiz.de/10013126942
This paper shows that out-of-sample forecast comparisons can help prevent data mining-induced overfitting. The basic results are drawn from simulations of a Monte Carlo design and a real data-based design similar to those in Lovell (1983) and Hoover and Perez (1999). In each simulation, a...
Persistent link: https://www.econbiz.de/10014130093
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, explore the benefits of an SMC variant we call generalized tempering for “online” estimation, and...
Persistent link: https://www.econbiz.de/10012865218
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, explore the benefits of an SMC variant we call generalized tempering for "online" estimation, and...
Persistent link: https://www.econbiz.de/10012865980
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, explore the benefits of an SMC variant we call generalized tempering for "online" estimation, and...
Persistent link: https://www.econbiz.de/10012038824
This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits o fgeneralized data tempering for “online” estimation...
Persistent link: https://www.econbiz.de/10014097669
Persistent link: https://www.econbiz.de/10010406029
This paper uses potential outcome time series to provide a nonparametric framework for quantifying dynamic causal effects in macroeconometrics. This provides sufficient conditions for the nonparametric identification of dynamic causal effects as well as clarify the causal content of several...
Persistent link: https://www.econbiz.de/10012891424
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice that the researchers make when estimating treatment effects. This paper proposes a data-driven way of averaging the estimators over the candidate specifications...
Persistent link: https://www.econbiz.de/10011309717
There is a large theoretical literature on methods for estimating causal effects under unconfoundedness, exogeneity, or selection-on-observables type assumptions using matching or propensity score methods. Much of this literature is highly technical and has not made inroads into empirical...
Persistent link: https://www.econbiz.de/10010259540