Showing 1 - 10 of 1,861
This paper is concerned with problem of variable selection and forecasting in the presence of parameter instability. There are a number of approaches proposed for forecasting in the presence of breaks, including the use of rolling windows or exponential down-weighting. However, these studies...
Persistent link: https://www.econbiz.de/10012258549
This paper is concerned with the problem of variable selection when the marginal effects of signals on the target variable as well as the correlation of the covariates in the active set are allowed to vary over time, without committing to any particular model of parameter instabilities. It poses...
Persistent link: https://www.econbiz.de/10013494088
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches and we consider both parametric and semiparametric estimation methods. The...
Persistent link: https://www.econbiz.de/10003780898
We introduce a new hybrid approach to joint estimation of Value at Risk (VaR) and Expected Shortfall (ES) for high quantiles of return distributions. We investigate the relative performance of VaR and ES models using daily returns for sixteen stock market indices (eight from developed and eight...
Persistent link: https://www.econbiz.de/10003891679
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003893144
This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (Θ) and unknown functions (h)of endogenous variables. We show that: (1) the penalized sieve minimum distance(PSMD) estimator (ˆΘ, ˆh) can...
Persistent link: https://www.econbiz.de/10003869261
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
We propose two new jump-robust estimators of integrated variance based on highfrequency return observations. These MinRV and MedRV estimators provide an attractive alternative to the prevailing bipower and multipower variation measures. Specifically, the MedRV estimator has better theoretical...
Persistent link: https://www.econbiz.de/10008657195
Econometric estimation using simulation techniques, such as the efficient method of moments, may betime consuming. The use of ordinary matrix programming languages such as Gauss, Matlab, Ox or S-plus will very often cause extra delay. For the Efficient Method of Moments implemented to...
Persistent link: https://www.econbiz.de/10010533201