Showing 91 - 100 of 1,562
For estimating regression function we can use many proceedings. In this paper, we have chosen to apply scaling functions to the estimation of regression functions. When one knows many bivariate date with the values of two variables, in the goal to express a correlation between the two variables...
Persistent link: https://www.econbiz.de/10014051848
The system GMM estimator for dynamic panel data models combines moment conditions for the model in first differences with moment conditions for the model in levels. It has been shown to improve on the GMM estimator in the first differenced model in terms of bias and root mean squared error....
Persistent link: https://www.econbiz.de/10014051957
In this work we study the large sample properties of the posterior-based inference in the curved exponential family under increasing dimension. The curved structure arises from the imposition of various restrictions, such as moment restrictions, on the model, and plays a fundamental role in...
Persistent link: https://www.econbiz.de/10014052183
We enhance the theory of asymptotic inference about predictive ability by considering the case when a set of variables used to construct predictions is sizable. To this end, we consider an alternative asymptotic framework where the number of predictors tends to infinity with the sample size,...
Persistent link: https://www.econbiz.de/10014053253
This article looks at the theory and empirics of extremal quantiles in economics, in particular value-at-risk. The theory of extremes has gone through remarkable developments and produced valuable empirical findings in the last 20 years. In the discussion, we put a particular focus on...
Persistent link: https://www.econbiz.de/10014053485
The likelihood functions for spatial autoregressive models with normal but heteroskedastic disturbances have been derived [Anselin (1988, ch.6)], but there is no implementation of maximum likelihood estimation for these likelihood functions in general cases with heteroskedastic disturbances....
Persistent link: https://www.econbiz.de/10014194202
In this paper we maximize the efficiency of a multivariate S-estimator under a constraint on the breakdown point. In the linear regression model, it is known that the highest possible efficiency of a maximum breakdown S-estimator is bounded above by 33% for Gaussian errors. We prove the...
Persistent link: https://www.econbiz.de/10014196384
The mean-variance optimization is one of the standard frameworks used to obtain optimal portfolio weights. This framework requires estimators for the mean vector and the covariance matrix of excess returns. The classical method is to adopt the usual sample estimates for the mean vector and the...
Persistent link: https://www.econbiz.de/10014196813
In recent years, there has been increasing interest in nonparametric bootstrap inference for economic time series. Nonparametric resampling techniques help protect against overly optimistic inference in time series models of unknown structure. They are particularly useful for evaluating the fit...
Persistent link: https://www.econbiz.de/10014198030
The system GMM estimator for dynamic panel data models combines moment conditions for the model in first differences with moment conditions for the model in levels. It has been shown to improve on the GMM estimator in the first differenced model in terms of bias and root mean squared error....
Persistent link: https://www.econbiz.de/10014202992