Showing 1 - 10 of 9,488
We propose new scoring rules based on partial likelihood for assessing the relative out-of-sample predictive accuracy of competing density forecasts over a specific region of interest, such as the left tail in financial risk management. By construction, existing scoring rules based on weighted...
Persistent link: https://www.econbiz.de/10011374395
We propose to forecast the Value-at-Risk of bivariate portfolios using copulas which are calibrated on the basis of nonparametric sample estimates of the coefficient of lower tail dependence. We compare our proposed method to a conventional copula-GARCH model where the parameter of a Clayton...
Persistent link: https://www.econbiz.de/10013029418
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361
The paper proposes a new nonparametric prior for two dimensional vectors of survival functions (S1, S2). The definition we introduce is based on the notion of L´evy copula and it will be used to model, in a nonparametric Bayesian framework, two sample survival data. Such an application will...
Persistent link: https://www.econbiz.de/10010343915
We consider nonparametric estimation of a mixed discrete-continuous distribution under anisotropic smoothness conditions and possibly increasing number of support points for the discrete part of the distribution. For these settings, we derive lower bounds on the estimation rates in the total...
Persistent link: https://www.econbiz.de/10011895828
Persistent link: https://www.econbiz.de/10013279559
Persistent link: https://www.econbiz.de/10011987513
This paper is concerned with the problem of deriving expressions for the Bayesian predictive survival functions for the median of future sample of generalized order statistics having odd and even sizes. Both of the informative and future samples are drawn from a population whose distribution is...
Persistent link: https://www.econbiz.de/10009769905
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function...
Persistent link: https://www.econbiz.de/10011506243
We examine the forecasting performance of parametric and nonparametric models based on a training-validation sample approach and the use of rolling short-term forecasts to compute root mean-squared errors,We find that the performance of these models is better than that of the naıve, no-change...
Persistent link: https://www.econbiz.de/10012997036