Showing 1 - 10 of 18
We investigate the possibility of exploiting partial correlation graphs for identifying interpretable latent variables underlying a multivariate time series. It is shown how the collapsibility and separation properties of partial correlation graphs can be used to understand the relation between...
Persistent link: https://www.econbiz.de/10010306285
Dimension reduction techniques for functional data analysis model and approximate smooth random functions by lower dimensional objects. In many applications the focus of interest lies not only in dimension reduction but also in the dynamic behaviour of the lower dimensional objects. The most...
Persistent link: https://www.econbiz.de/10003727490
Persistent link: https://www.econbiz.de/10003910560
Persistent link: https://www.econbiz.de/10009720758
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10010259630
Persistent link: https://www.econbiz.de/10011504522
Persistent link: https://www.econbiz.de/10011504536
We investigate the possibility of exploiting partial correlation graphs for identifying interpretable latent variables underlying a multivariate time series. It is shown how the collapsibility and separation properties of partial correlation graphs can be used to understand the relation between...
Persistent link: https://www.econbiz.de/10010476999
Persistent link: https://www.econbiz.de/10013274311
Persistent link: https://www.econbiz.de/10012509995