Showing 1 - 10 of 7,546
We propose a novel and easy-to-implement framework for forecasting correlation risks based on a large set of salient realized correlation features and the sparsity-encouraging LASSO technique. Considering the universe of S&P 500 stocks, we find that the new approach manifests in statistically...
Persistent link: https://www.econbiz.de/10014235631
We propose two simple evaluation methods for time varying density forecasts of continuous higher dimensional random variables. Both methods are based on the probability integral transformation for unidimensional forecasts. The first method tests multinormal densities and relies on the rotation...
Persistent link: https://www.econbiz.de/10013138453
The GARCH(1,1) model and its extensions have become a standard econometric tool for modeling volatility dynamics of financial returns and portfolio risk. In this paper, we propose an adjustment of GARCH implied conditional value-at-risk and expected shortfall forecasts that exploits the...
Persistent link: https://www.econbiz.de/10013084434
The GARCH(1,1) model and its extensions have become a standard econometric tool for modeling volatility dynamics of financial returns and port-folio risk. In this paper, we propose an adjustment of GARCH implied conditional value-at-risk and expected shortfall forecasts that exploits the...
Persistent link: https://www.econbiz.de/10009723920
We evaluate the performance of several linear and nonlinear machine learning models in forecasting the realized volatility (RV) of ten global stock market indices in the period from January 2000 to December 2021. We train models using a dataset which includes past values of the RV and additional...
Persistent link: https://www.econbiz.de/10014076641
We propose an automatic machine-learning system to forecast realized volatility for S&P 100 stocks using 118 features and five machine learning algorithms. A simple average ensemble model combining all learning algorithms delivers extraordinary performance across forecast horizons, and the...
Persistent link: https://www.econbiz.de/10013234262
Patton and Timmermann (2011, 'Forecast Rationality Tests Based on Multi-Horizon Bounds', Journal of Business & Economic Statistics, forthcoming) propose a set of useful tests for forecast rationality or optimality under squared error loss, including an easily implemented test based on a...
Persistent link: https://www.econbiz.de/10013120348
The out-of-sample R2 is designed to measure forecasting performance without look-ahead bias. However, researchers can hack this performance metric even without multiple tests by constructing a prediction model using the intuition derived from empirical properties that appear only in the test...
Persistent link: https://www.econbiz.de/10014364026
In this paper, we estimate, model and forecast Realized Range Volatility, a new realized measure and estimator of the quadratic variation of financial prices. This estimator was early introduced in the literature and it is based on the high-low range observed at high frequency during the day. We...
Persistent link: https://www.econbiz.de/10013130487
We examine the accuracy of survey-based expectations of the Chilean exchange rate relative to the US dollar. Our out-of-sample analysis reveals that survey-based forecasts outperform the Driftless Random Walk (DRW) in terms of Mean Squared Prediction Error at several forecasting horizons. This...
Persistent link: https://www.econbiz.de/10012906841