Showing 1 - 10 of 6,134
the Generalized Method of Moments (GMM). It is shown how the procedure can be generalized to deal with large dimensional … systems by means of a two-step strategy. The finite sample properties of the GMM estimator of the combination weights are … combination ; GMM ; portfolio optimization …
Persistent link: https://www.econbiz.de/10003796201
We examine the impact of temporal and portfolio aggregation on the quality of Value-at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio of stocks, bonds and alternative investments. The VaR forecasts are constructed based on daily, weekly or biweekly...
Persistent link: https://www.econbiz.de/10012970357
We examine the impact of temporal and portfolio aggregation on the quality of Value-at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio of stocks, bonds and alternative investments. The VaR forecasts are constructed based on daily, weekly or biweekly...
Persistent link: https://www.econbiz.de/10011431503
Is univariate or multivariate modelling more effective when forecasting the market risk of stock portfolios? We examine this question in the context of forecasting the one-week-ahead Expected Shortfall of a portfolio invested in the Fama-French and momentum factors. Apply ingextensive tests and...
Persistent link: https://www.econbiz.de/10012898954
This study predicts stock market volatility and applies them to the standard problem in finance, namely, asset allocation. Based on machine learning and model averaging approaches, we integrate the drivers’ predictive information to forecast market volatilities. Using various evaluation...
Persistent link: https://www.econbiz.de/10013404229
We use boosted decision trees to generate daily out-of-sample forecasts of excess returns for Bitcoin and Ethereum, the two best-known and largest cryptocurrencies. The decision trees incorporate information from 39 predictors, including variables relating to cryptocurrency fundamentals,...
Persistent link: https://www.econbiz.de/10013213970
We develop a new variational Bayes estimation method for large-dimensional sparse vector autoregressive models with exogenous predictors. Unlike existing Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms, our approach is not based on a structural form representation of the...
Persistent link: https://www.econbiz.de/10013239660
We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP). The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss...
Persistent link: https://www.econbiz.de/10012847269
We build the time series of optimal realized portfolio weights from high-frequency data and we suggest a novel Dynamic Conditional Weights (DCW) model for their dynamics. DCW is benchmarked against popular model-based and model-free specifications in terms of weights forecasts and portfolio...
Persistent link: https://www.econbiz.de/10012835791
We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP). The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss...
Persistent link: https://www.econbiz.de/10012243462