Showing 1 - 10 of 637
Several approaches for subset recovery and improved forecasting accuracy have been proposed and studied. One way is to apply a regularization strategy and solve the model selection task as a continuous optimization problem. One of the most popular approaches in this research field is given by...
Persistent link: https://www.econbiz.de/10009630302
Persistent link: https://www.econbiz.de/10012256541
Persistent link: https://www.econbiz.de/10009724340
We consider a Bayesian Model Averaging approach for the purpose of forecasting Swedish consumer price index inflation using a large set of potential indicators, comprising some 80 quarterly time series covering a wide spectrum of Swedish economic activity. The paper demonstrates how to...
Persistent link: https://www.econbiz.de/10011584482
Using virtual stock markets with artificial interacting software investors, aka agent-based models (ABMs), we present a method to reverse engineer real-world financial time series. We model financial markets as made of a large number of interacting boundedly rational agents. By optimizing the...
Persistent link: https://www.econbiz.de/10003973139
Persistent link: https://www.econbiz.de/10009720743
This study presents an extension of the Gaussian process regression model for multiple-input multiple-output forecasting. This approach allows modelling the cross-dependencies between a given set of input variables and generating a vectorial prediction. Making use of the existing correlations in...
Persistent link: https://www.econbiz.de/10011537542
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10011383033
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10013130370
We propose a new methodology to estimate the empirical pricing kernel implied from option data. In contrast to most of the studies in the literature that use an indirect approach, i.e. first estimating the physical and risk-neutral densities and obtaining the pricing kernel in a second step, we...
Persistent link: https://www.econbiz.de/10013108080