Showing 1 - 10 of 1,656
Virtually each seasonal adjustment software includes an ensemble of seasonality tests for assessing whether a given time series is in fact a candidate for seasonal adjustment. However, such tests are certain to produce either the same resultor conflicting results, raising the question if there...
Persistent link: https://www.econbiz.de/10012301212
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10003402291
Digital technologies produce vast amounts of unstructured data that can be stored and accessed by traditional banks and fintechs. Prior literature on the topic indicates that certain aspects of this unstructured data could be valuable for decisions regarding the acceptance and pricing of credit...
Persistent link: https://www.econbiz.de/10012843536
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10009125559
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10012966238
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10012966310
We propose a new nonlinear classification method based on a Bayesian "sum-of-trees" model, the Bayesian Additive Classification Tree (BACT), which extends the Bayesian Additive Regression Tree (BART) method into the classification context. Like BART, the BACT is a Bayesian nonparametric additive...
Persistent link: https://www.econbiz.de/10003635971
We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10003928976
We are interested in forecasting bankruptcies in a probabilistic way. Specifcally, we compare the classifcation performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10013153025
The main objective of this analysis is to evaluate and compare the various classification algorithms for the automatic identification of favourable days for intraday trading using the Croatian stock index CROBEX data. Intra-day trading refers to the acquisition and sale of financial instruments...
Persistent link: https://www.econbiz.de/10012417514