Showing 1 - 10 of 20,578
We develop a penalized two-pass regression with time-varying factor loadings. The penalization in the first pass enforces sparsity for the time-variation drivers while also maintaining compatibility with the no arbitrage restrictions by regularizing appropriate groups of coefficients. The second...
Persistent link: https://www.econbiz.de/10012487589
We propose a nonparametric Bayesian approach for conducting inference on probabilistic surveys. We use this approach to study whether U.S. Survey of Professional Forecasters density projections for output growth and inflation are consistent with the noisy rational expectations hypothesis. We...
Persistent link: https://www.econbiz.de/10014080529
We propose a nonparametric Bayesian approach for conducting inference on probabilistic surveys. We use this approach to study whether U.S. Survey of Professional Forecasters density projections for output growth and inflation are consistent with the noisy rational expectations hypothesis. We...
Persistent link: https://www.econbiz.de/10013336345
We develop a new variational Bayes estimation method for large-dimensional sparse vector autoregressive models with exogenous predictors. Unlike existing Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms, our approach is not based on a structural form representation of the...
Persistent link: https://www.econbiz.de/10013239660
Models based on factors such as size, value, or momentum are ubiquitous in asset pricing. Therefore, portfolio allocation and risk management require estimates of the volatility of these factors. While realized volatility has become a standard tool for liquid individual assets, this measure is...
Persistent link: https://www.econbiz.de/10011860248
We extend the double-well potential process to a three-parameter version in order to model intraday price dynamics, with a focus on the intraday momentum and reversal. The proposed process has a parsimonious form of three parameters controlling momentum, reversal, and volatility respectively. By...
Persistent link: https://www.econbiz.de/10012868934
Forecasting volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer from many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10012958968
Several novel large volatility matrix estimation methods have been developed based on the high-frequency financial data. They often employ the approximate factor model that leads to a low-rank plus sparse structure for the integrated volatility matrix and facilitates estimation of large...
Persistent link: https://www.econbiz.de/10012941598
We examine the predictive power of market-based indicators over the positive and negative stock market bubbles via an application of the LPPLS Confidence TM Multi-scale Indicators to the S&P 500 index. We find that the LPPLS framework is able to successfully capture, ex-ante, some of the...
Persistent link: https://www.econbiz.de/10012931948
Forecasting volatility models typically rely on either daily or high frequency (HF) data and the choice between these two categories is not obvious. In particular, the latter allows to treat volatility as observable but they suffer from many limitations. HF data feature microstructure problem,...
Persistent link: https://www.econbiz.de/10011674479