Showing 1 - 10 of 12
Persistent link: https://www.econbiz.de/10012619654
Persistent link: https://www.econbiz.de/10012439640
Persistent link: https://www.econbiz.de/10012139780
Persistent link: https://www.econbiz.de/10013461140
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014322889
Persistent link: https://www.econbiz.de/10014471792
We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all...
Persistent link: https://www.econbiz.de/10012894411
We survey recent methodological contributions in asset pricing using factor models and machine learning. We organize these results based on their primary objectives: estimating expected returns, factors, risk exposures, risk premia, and the stochastic discount factor, as well as model comparison...
Persistent link: https://www.econbiz.de/10013322001
We introduce a new text-mining methodology that extracts sentiment information from news articles to predict asset returns. Unlike more common sentiment scores used for stock return prediction (e.g., those sold by commercial vendors or built with dictionary-based methods), our supervised...
Persistent link: https://www.econbiz.de/10012480131
We introduce a new text-mining methodology that extracts information from news articles to predict asset returns. Unlike more common sentiment scores used for stock return prediction (e.g., those sold by commercial vendors or built with dictionary-based methods), our supervised learning...
Persistent link: https://www.econbiz.de/10012849182