Showing 1 - 10 of 1,610
I generate priors for a VAR from a standard RBC model, a RBC model with capital-adjustment costs and habit formation, and a sticky-price model with an unaccommodating monetary authority. The response of hours worked to a TFP shock differs sharply across these models. I compare the accuracy of...
Persistent link: https://www.econbiz.de/10014218961
We analyse the accuracy of an econometric model for nowcasting GDP growth in a true real-time setting. The analysis is based on a unique sample of nowcasts that were produced in real time and stored. Our results support the use of econometric models for nowcasting because the accuracy of these...
Persistent link: https://www.econbiz.de/10015409530
This paper contributes to the productivity literature by using results from firm-level productivity studies to improve forecasts of macro-level productivity growth. The paper employs current research methods on estimating firm-level productivity to build times-series components that capture the...
Persistent link: https://www.econbiz.de/10011378362
This paper contributes to the productivity literature by using results from firm-level productivity studies to improve forecasts of macro-level productivity growth. The paper employs current research methods on estimating firm-level productivity to build times-series components that capture the...
Persistent link: https://www.econbiz.de/10012976846
Electricity demand is modeled as a time-varying parameters (TVP) vector autoegression with or without imposing cointegration. The paper applies Bayesian strategies where all or a part of the parameters are allowed to vary, and compares their forecasts performances with alternative time series...
Persistent link: https://www.econbiz.de/10014193091
In this paper, we propose a Bayesian estimation and prediction procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, which gives posterior predictive densities as a byproduct. We show that the...
Persistent link: https://www.econbiz.de/10014202739
This paper addresses the issue of improving the forecasting performance of vector autoregressions (VARs) when the set of available predictors is inconveniently large to handle with methods and diagnostics used in traditional small-scale models. First, available information from a large dataset...
Persistent link: https://www.econbiz.de/10014215970
We consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. The key difference from traditional Bayesian variable selection is that we also allow for uncertainty...
Persistent link: https://www.econbiz.de/10014221496
We use data from the London Metal Exchange (LME) to forecast monthly copper returns using the recently proposed dynamic model averaging and selection (DMA/DMS) methodology which incorporates time varying parameters as well as time varying model averaging and selection into a unifying framework....
Persistent link: https://www.econbiz.de/10012972876
Machine learning methods are becoming increasingly popular in economics, due to the increased availability of large datasets. In this paper I evaluate a recently proposed algorithm called Generalized Approximate Message Passing (GAMP), which has been popular in signal processing and compressive...
Persistent link: https://www.econbiz.de/10012955264