Showing 1 - 10 of 17,794
We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor's 500...
Persistent link: https://www.econbiz.de/10010478989
Persistent link: https://www.econbiz.de/10009301308
obtained from Linear Models and Conditional heteroscedasticity models …
Persistent link: https://www.econbiz.de/10014159095
This paper contains a survey of univariate models of conditional heteroskedasticity. The classical ARCH model is mentioned, and various extensions of the standard GARCH model are highlighted. This includes the Exponential GARCH model. Stochastic volatility models remain outside this review. --...
Persistent link: https://www.econbiz.de/10003394988
In this paper we discuss some deep implications of the recent paper by Bollerslev et al. (2016) (BPQ). In BPQ the volatility dynamics modeled as a HAR is augmented by a term involving quarticity in order to correct measurement errors in realized variance. We show that the model is...
Persistent link: https://www.econbiz.de/10012947755
For forecasting and economic analysis many variables are used in logarithms (logs). In time series analysis this transformation is often considered to stabilize the variance of a series. We investigate under which conditions taking logs is beneficial for forecasting. Forecasts based on the...
Persistent link: https://www.econbiz.de/10003820020
Although many macroeconomic time series are assumed to follow nonlinear processes, nonlinear models often do not provide better predictions than their linear counterparts. Furthermore, such models easily become very complex and difficult to estimate. The aim of this study is to investigate...
Persistent link: https://www.econbiz.de/10010434848
In this paper, we propose a simulation-based method for computing point and density forecasts for univariate noncausal and non-Gaussian autoregressive processes. Numerical methods are needed to forecast such time series because the prediction problem is generally nonlinear and no analytic...
Persistent link: https://www.econbiz.de/10013147243
This paper examines the impact of intraday periodicity on forecasting realized volatility using a heterogeneous autoregressive model (HAR) framework. We show that periodicity inflates the variance of the realized volatility and biases jump estimators. This combined effect adversely affects...
Persistent link: https://www.econbiz.de/10012063222
We propose Midastar models by combining the Mixed Data Sampling (MIDAS) and the threshold autoregression (TAR). The Midastar model of the first kind is designed for a low frequency target variable and a high frequency threshold variable. The proposed model can detect threshold effects...
Persistent link: https://www.econbiz.de/10014240508