Showing 1 - 10 of 241
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10003633940
We propose a new nonlinear classification method based on a Bayesian "sum-of-trees" model, the Bayesian Additive Classification Tree (BACT), which extends the Bayesian Additive Regression Tree (BART) method into the classification context. Like BART, the BACT is a Bayesian nonparametric additive...
Persistent link: https://www.econbiz.de/10003635971
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth...
Persistent link: https://www.econbiz.de/10003636001
Persistent link: https://www.econbiz.de/10003324453
We model the dynamics of ask and bid curves in a limit order book market using a dynamic semiparametric factor model. The shape of the curves is captured by a factor structure which is estimated nonparametrically. Corresponding factor loadings are assumed to follow multivariate dynamics and are...
Persistent link: https://www.econbiz.de/10003881566
We model the dynamics of ask and bid curves in a limit order book market using a dynamic semiparametric factor model. The shape of the curves is captured by a factor structure which is estimated nonparametrically. Corresponding factor loadings are assumed to follow multivariate dynamics and are...
Persistent link: https://www.econbiz.de/10003887437
Persistent link: https://www.econbiz.de/10008663388
We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10003928976
In this paper we compare the in-sample fit and out-of-sample forecasting performance of no-arbitrage quadratic and essentially affine term structure models, as well as the dynamic Nelson-Siegel model. In total eleven model variants are evaluated, comprising five quadratic, four affine and two...
Persistent link: https://www.econbiz.de/10003973519
In many economic applications it is desirable to make future predictions about the financial status of a company. The focus of predictions is mainly if a company will default or not. A support vector machine (SVM) is one learning method which uses historical data to establish a classification...
Persistent link: https://www.econbiz.de/10003973650