Showing 1 - 10 of 69
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009747934
This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...
Persistent link: https://www.econbiz.de/10009419335
Persistent link: https://www.econbiz.de/10010247741
The goal of many empirical papers in economics is to provide an estimate of the causal or structural effect of a change in a treatment or policy variable, such as a government intervention or a price, on another economically interesting variable, such as unemployment or amount of a product...
Persistent link: https://www.econbiz.de/10010203449
We consider estimation and inference in panel data models with additive unobserved individual specific heterogeneity in a high dimensional setting. The setting allows the number of time varying regressors to be larger than the sample size. To make informative estimation and inference feasible,...
Persistent link: https://www.econbiz.de/10010459263
Persistent link: https://www.econbiz.de/10010481342
Persistent link: https://www.econbiz.de/10010485099
Persistent link: https://www.econbiz.de/10011692431
Persistent link: https://www.econbiz.de/10003432546