Showing 1 - 10 of 882
Machine learning (ML) is a novel method that has applications in asset pricing and that fits well within the problem of measurement in economics. Unlike econometrics, ML models are not designed for parameter estimation and inference, but similar to econometrics, they address, and may be better...
Persistent link: https://www.econbiz.de/10013475217
Recent research suggests that machine learning models dominate traditional linear models in predicting cross-sectional stock returns. We confirm this finding when predicting one-month forward-looking returns based on a set of common stock characteristics, including predictors such as short-term...
Persistent link: https://www.econbiz.de/10012840386
This paper proposes a machine learning approach to building investment strategies that addresses several drawbacks of a classic approach. To demonstrate our approach, we use a logistic regression algorithm to build a time-series dual momentum trading strategy on the S&P 500 Index. Our algorithm...
Persistent link: https://www.econbiz.de/10012893847
We apply state-of-the-art Bayesian machine learning to test whether we can extract valuable information from analysts' recommendations of stock performance. We use a probabilistic model for independent Bayesian classifier combination that has been successfully applied in both the physical and...
Persistent link: https://www.econbiz.de/10012897756
This paper uses a comprehensive set of variables from the five largest Eurozone countries to compare the performance of simple univariate and machine learning-based multivariate models in predicting stock market crashes. The statistical predictive performance of a support vector machine-based...
Persistent link: https://www.econbiz.de/10013225686
Conducting, to our knowledge, the largest study ever of five-minute equity market returns using state-of-the-art machine learning models trained on the cross-section of lagged market index constituent returns, we show that regularized linear models and nonlinear tree-based models yield...
Persistent link: https://www.econbiz.de/10013242608
We consider the effect of adaptive model selection and regularization by agents on price volatility and market stability in a simple agent-based model of a financial market. The agents base their trading behavior on forecasts of future returns, which they update adaptively and asynchronously...
Persistent link: https://www.econbiz.de/10012849509
We examine Sentix sentiment indices for use in tactical asset allocation. In particular, we construct monthly relative sentiment factors for the U.S., Europe, Japan, and Asia ex-Japan by taking the difference in 6-month economic expectations between each region's institutional and individual...
Persistent link: https://www.econbiz.de/10012847162
This paper compares various machine learning models to predict the cross-section of emerging market stock returns. We document that allowing for non-linearities and interactions leads to economically and statistically superior out-of-sample returns compared to traditional linear models. Although...
Persistent link: https://www.econbiz.de/10014236025
This study predicts stock splits using two ensemble machine learning techniques: gradient boosting machines (GBMs) and random forests (RFs). The goal is to form implementable portfolios based on positive predictions to generate abnormal returns. Since splits are rare events, we use SMOTE...
Persistent link: https://www.econbiz.de/10013301594