Showing 1 - 10 of 1,934
This paper shows the evolution of financial distress prediction models of the past four decades. Special attention is paid to linear discriminant analyses, logistic regression analyses and neural networks. Based on accounting data of 50 UK industrial firms, prediction models are estimated using...
Persistent link: https://www.econbiz.de/10012946424
The paper deals with the topic of modelling the probability of bankruptcy of Polish enterprises using convolutional neural networks. Convolutional networks take images as input, so it was thus necessary to apply the method of converting the observation vector to a matrix. Benchmarks for...
Persistent link: https://www.econbiz.de/10012799240
Despite the number of studies on bankruptcy prediction using financial ratios, very little is known about how external audit information can contribute to anticipating financial distress. A handful of papers have shown that a combination of ratios and audit data is significant for predictive...
Persistent link: https://www.econbiz.de/10012039600
I study the use of non-linear models and accounting inputs to predict the occurrence of litigated bankruptcies and their associated filing outcomes. The main purpose of this study is to identify the accounting patterns associated with bankruptcies. The filing outcomes include, among others, how...
Persistent link: https://www.econbiz.de/10012848588
We develop a framework to nowcast (and forecast) economic variables with machine learning techniques. We explain how machine learning methods can address common shortcomings of traditional OLS-based models and use several machine learning models to predict real output growth with lower forecast...
Persistent link: https://www.econbiz.de/10012836537
Instead of relying solely on data of a single time series it is possible to use information of parallel, similar time series to improve prediction quality. Our data set consists of microeconomic data of daily store deposits from a large number of different stores. We analyze how prediction...
Persistent link: https://www.econbiz.de/10012838913
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook.Most traditional forecasting models rely on fitting data to a pre-specified relationship between inputand output variables, thereby assuming a specific functional and stochastic process underlying...
Persistent link: https://www.econbiz.de/10012906888
Following the financial crisis of 2008, the regulators established a stress testing framework known as comprehensive capital analysis and review (CCAR). The regulatory stress scenarios are macroeconomic and do not define stress values for all the relevant risk factors. In particular, only three...
Persistent link: https://www.econbiz.de/10012868018
We show that machine learning methods, in particular extreme trees and neural networks (NNs), provide strong statistical evidence in favor of bond return predictability. NN forecasts based on macroeconomic and yield information translate into economic gains that are larger than those obtained...
Persistent link: https://www.econbiz.de/10012851583
We present a first assessment of the predictive ability of machine learning methods for inflation forecasting in Costa Rica. We compute forecasts using two variants of k-nearest neighbors, random forests, extreme gradient boosting and a long short-term memory (LSTM) network. We evaluate their...
Persistent link: https://www.econbiz.de/10012545612