Showing 1 - 10 of 866
The presence of long memory in Realized Volatility (RV) is a widespread stylized fact. The origins of long memory in RV have been attributed to jumps, structural breaks, non-linearities, or pure long memory. An important development has been the Heterogeneous Autoregressive (HAR) model and its...
Persistent link: https://www.econbiz.de/10011964976
The sum of squared intraday returns provides an unbiased and almost error-free measure of ex-post volatility. In this paper we develop a nonlinear Autoregressive Fractionally Integrated Moving Average (ARFIMA) model for realized volatility, which accommodates level shifts, day-of-the-week...
Persistent link: https://www.econbiz.de/10011335205
The paper examines the relative performance of Stochastic Volatility (SV) and GARCH(1,1) models fitted to twenty plus years of daily data for three indices. As a benchmark, I use the realized volatility (RV) for the S&P 500, DOW JONES and STOXX50 indices, sampled at 5-minute intervals, taken...
Persistent link: https://www.econbiz.de/10012384599
The paper examines the relative performance of Stochastic Volatility (SV) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) (1,1) models fitted to ten years of daily data for FTSE. As a benchmark, we used the realized volatility (RV) of FTSE sampled at 5 min intervals taken...
Persistent link: https://www.econbiz.de/10012203997
In this paper we document that realized variation measures constructed from highfrequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even...
Persistent link: https://www.econbiz.de/10010326350
Many recent modelling advances in finance topics ranging from the pricing of volatility-based derivative products to asset management are predicated on the importance of jumps, or discontinuous movements in asset returns. In light of this, a number of recent papers have addressed volatility...
Persistent link: https://www.econbiz.de/10009771770
We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor's 500...
Persistent link: https://www.econbiz.de/10010478989
This paper extends the popular Diebold-Mariano test to situations when the forecast error loss differential exhibits long memory. It is shown that this situation can arise frequently, since long memory can be transmitted from forecasts and the forecast objective to forecast error loss...
Persistent link: https://www.econbiz.de/10011430242
We show that realized volatility, especially the realized volatility of financial sector stock returns, has strong predictive content for the future distribution of market returns. This is a robust feature of the last century of U.S. data and, most importantly, can be exploited in real time....
Persistent link: https://www.econbiz.de/10011868395
This paper examines the impact of intraday periodicity on forecasting realized volatility using a heterogeneous autoregressive model (HAR) framework. We show that periodicity inflates the variance of the realized volatility and biases jump estimators. This combined effect adversely affects...
Persistent link: https://www.econbiz.de/10012063222