Showing 1 - 10 of 46
We propose a model to forecast very large realized covariance matrices of returns, applying it to the constituents of the S&P 500 on a daily basis. To address the curse of dimensionality, we decompose the return covariance matrix using standard firm-level factors (e.g., size, value and...
Persistent link: https://www.econbiz.de/10012921455
Persistent link: https://www.econbiz.de/10010433252
In this paper we consider modeling and forecasting of large realized covariance matrices by penalized vector autoregressive models. We propose using Lasso-type estimators to reduce the dimensionality to a manageable one and provide strong theoretical performance guarantees on the forecast...
Persistent link: https://www.econbiz.de/10010433899
Persistent link: https://www.econbiz.de/10011688494
In this paper we consider modeling and forecasting of large realized covariance matrices by penalized vector autoregressive models. We propose using Lasso-type estimators to reduce the dimensionality to a manageable one and provide strong theoretical performance guarantees on the forecast...
Persistent link: https://www.econbiz.de/10013044190
Factor and sparse models are two widely used methods to impose a low-dimensional structure in high dimension. They are seemingly mutually exclusive. In this paper, we propose a simple lifting method that combines the merits of these two models in a supervised learning methodology that allows to...
Persistent link: https://www.econbiz.de/10012435974
Persistent link: https://www.econbiz.de/10015045177
Persistent link: https://www.econbiz.de/10003092858
We introduce the realized co-range, a novel estimator of the daily covariance between asset returns based on intraday high-low price ranges. In an ideal world, the co-range is five times more efficient than the realized covariance, which uses cross-products of intraday returns, when sampling at...
Persistent link: https://www.econbiz.de/10013150669
Persistent link: https://www.econbiz.de/10003907520