Showing 1 - 7 of 7
In this paper we study the performance of the GMM estimator in the context of the covariance structure of earnings. Using analytical and Monte Carlo techniques we examine the sensitivity of parameter identification to key features such as panel length, sample size, the degree of persistence of...
Persistent link: https://www.econbiz.de/10013141764
In this paper we study the performance of the GMM estimator in the context of the covariance structure of earnings. Using analytical and Monte Carlo techniques we examine the sensitivity of parameter identification to key features such as panel length, sample size, the degree of persistence of...
Persistent link: https://www.econbiz.de/10010269863
Persistent link: https://www.econbiz.de/10008806662
Persistent link: https://www.econbiz.de/10009790241
In this paper we study the performance of the GMM estimator in the context of the covariance structure of earnings. Using analytical and Monte Carlo techniques we examine the sensitivity of parameter identification to key features such as panel length, sample size, the degree of persistence of...
Persistent link: https://www.econbiz.de/10003966909
A common approach to dealing with missing data is to estimate the model on the common subset of data, by necessity throwing away potentially useful data. We derive a new probit type estimator for models with missing covariate data where the dependent variable is binary. For the benchmark case of...
Persistent link: https://www.econbiz.de/10010269313
A common approach to dealing with missing data is to estimate the model on the common subset of data, by necessity throwing away potentially useful data. We derive a new probit type estimator for models with missing covariate data where the dependent variable is binary. For the benchmark case of...
Persistent link: https://www.econbiz.de/10003829113