Showing 1 - 5 of 5
In this paper, we document the importance of memory in machine learning (ML)-based models relying on firm characteristics for asset pricing. We find that predictive algorithms perform best when they are trained on long samples, with long-term returns as dependent variables. In addition, we...
Persistent link: https://www.econbiz.de/10014433680
In this paper, we document the importance of memory in machine learning (ML)-based models relying on firm characteristics for asset pricing. We come to three empirical conclusions. First, the pure out-of-sample fit of the models is often poor: we find that most R^2 measures are negative,...
Persistent link: https://www.econbiz.de/10012835546
This article aims to enhance factor investing with reinforcement learning (RL) techniques. The agent learns through sequential random allocations which rely on firms' characteristics. Using Dirichlet distributions as the driving policy, we derive closed forms for the policy gradients and...
Persistent link: https://www.econbiz.de/10013290047
This article aims to enhance factor investing with reinforcement learning (RL) techniques. The agent learns through sequential random allocations which rely on firms' characteristics. Using Dirichlet distributions as the driving policy, we derive closed forms for the policy gradients and...
Persistent link: https://www.econbiz.de/10013290048
In this paper, we document the importance of memory in machine learning (ML)-based models relying on firm characteristics for asset pricing. We find that predictive algorithms perform best when they are trained on long samples, with long-term returns as dependent variables. In addition, we...
Persistent link: https://www.econbiz.de/10013322735