Showing 1 - 10 of 10
Nonlinearities in the drift and diffusion coefficients influence temporal dependence in scalar diffusion models. We study this link using two notions of temporal dependence: beta-mixing and rho-mixing. We show that beta-mixing and rho-mixing with exponential decay are essentially equivalent...
Persistent link: https://www.econbiz.de/10005087377
The local Whittle (or Gaussian semiparametric) estimator of long range dependence, proposed by Kunsch (1987) and analyzed by Robinson (1995a), has a relatively slow rate of convergence and a finite sample bias that can be large. In this paper, we generalize the local Whittle estimator to...
Persistent link: https://www.econbiz.de/10004990777
Nonlinearities in the drift and diffusion coefficients influence temporal dependence in diffusion models. We study this link using three measures of temporal dependence: rho-mixing, beta-mixing and alpha-mixing. Stationary diffusions that are rho-mixing have mixing coefficients that decay...
Persistent link: https://www.econbiz.de/10008533975
It has been know since Phillips and Hansen (1990) that cointegrated systems can be consistently estimated using stochastic trend instruments that are independent of the system variables. A similar phenomenon occurs with deterministically trending instruments. The present work shows that such...
Persistent link: https://www.econbiz.de/10005463872
An asymptotic expansion is given for the autocovariance matrix of a vector of stationary long-memory processes with memory parameters d satisfying 0 < d < 1/2. The theory is then applied to deliver formulae for the long run covariance matrices of multivariate time series with long memory.
Persistent link: https://www.econbiz.de/10005463993
An exact form of the local Whittle likelihood is studied with the intent of developing a general purpose estimation procedure for the memory parameter (d) that does not rely on tapering or differencing prefilters. The resulting exact local Whittle estimator is shown to be consistent and to have...
Persistent link: https://www.econbiz.de/10005593209
There is an emerging consensus in empirical finance that realized volatility series typically display long range dependence with a memory parameter (d) around 0.4 (Andersen et. al. (2001), Martens et al. (2004)). The present paper provides some analytical explanations for this evidence and shows...
Persistent link: https://www.econbiz.de/10005593334
May 2008 A commonly used defining property of long memory time series is the power law decay of the autocovariance function. Some alternative methods of deriving this property are considered working from the alternate definition in terms of a fractional pole in the spectrum at the origin. The...
Persistent link: https://www.econbiz.de/10005593519
An infinite-order asymptotic expansion is given for the autocovariance function of a general stationary long-memory process with memory parameter d in (-1/2,1/2). The class of spectral densities considered includes as a special case the stationary and invertible ARFIMA(p,d,q) model. The leading...
Persistent link: https://www.econbiz.de/10005593593
Limit theory involving stochastic integrals is now widespread in time series econometrics and relies on a few key results on function space weak convergence. In establishing weak convergence of sample covariances to stochastic integrals, the literature commonly uses martingale and semimartingale...
Persistent link: https://www.econbiz.de/10011096424