Showing 1 - 10 of 42
Persistent link: https://www.econbiz.de/10009521858
Persistent link: https://www.econbiz.de/10009524199
Persistent link: https://www.econbiz.de/10009700545
Persistent link: https://www.econbiz.de/10009720757
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10013114226
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10013103116
We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MS-GARCH models....
Persistent link: https://www.econbiz.de/10013088788
This paper proposes a Bayesian, graph-based approach to identification in vector autoregressive (VAR) models. In our Bayesian graphical VAR (BGVAR) model, the contemporaneous and temporal causal structures of the structural VAR model are represented by two different graphs. We also provide an...
Persistent link: https://www.econbiz.de/10013064757
We propose a Markov Switching Graphical Seemingly Unrelated Regression (MS-GSUR) model to investigate time-varying systemic risk based on a range of multi-factor asset pricing models. Methodologically, we develop a Markov Chain Monte Carlo (MCMC) scheme in which latent states are identified on...
Persistent link: https://www.econbiz.de/10012904580
We propose a new Bayesian Markov switching regression model for multi-dimensional arrays (tensors) of binary time series. We assume a zero-inflated logit dynamics with time-varying parameters and apply it to multi-layer temporal networks. The original contribution is threefold. First, in order...
Persistent link: https://www.econbiz.de/10012917228