Showing 1 - 10 of 16
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10005144469
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, a location-scale transformation and a transformation to polar coordinates are used....
Persistent link: https://www.econbiz.de/10005137171
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10010324702
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10010325429
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10011302625
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10011334849
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10010605072
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algoritms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10005730343
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlo method for Bayesian analysis of models with ill-behaved posterior distributions. In order to sample efficiently from such a distribution, location-scale transformation and a transformation to polar coordinates are used....
Persistent link: https://www.econbiz.de/10005042753
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10011256462