Showing 1 - 10 of 11
Adaptive Polar Sampling (APS) algorithms are proposed for Bayesian analysis of models with nonelliptical, possibly, multimodal posterior distributions. A location-scale transformation and a transformation to polar coordinates are used. After the transformation to polar coordinates, a...
Persistent link: https://www.econbiz.de/10010837708
Trends and cyclical components in economic time series are modeled in a Bayesian framework. This enables prior notions about the duration of cycles to be used, while the generalized class of stochastic cycles employed allows the possibility of relatively smooth cycles being extracted. The...
Persistent link: https://www.econbiz.de/10010837758
Cyclical components in economic time series are analysed in a Bayesian framework, thereby allowing prior notions about periodicity to be used. The method is based on a general class of unobserved component models that encompasses a range of dynamics in the stochastic cycle. This allows for...
Persistent link: https://www.econbiz.de/10010837772
Empirical analysis of individual response behavior is sometimes limited due to the lack of explanatory variables at the individual level. In this paper we put forward a new approach to estimate the effects of covariates on individual response, where the covariates are unknown at the individual...
Persistent link: https://www.econbiz.de/10010837829
Adaptive radial-based direction sampling (ARDS) algorithms are specified for Bayesian analysis of models with nonelliptical, possibly, multimodal target distributions. A key step is a radial-based transformation to directions and distances. After the transformations a Metropolis-Hastings method...
Persistent link: https://www.econbiz.de/10010731663
Likelihoods and posteriors of instrumental variable regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating such contours using...
Persistent link: https://www.econbiz.de/10010731672
The performance of Monte Carlo integration methods like importance sampling or Markov Chain Monte Carlo procedures greatly depends on the choice of the importance or candidate density. Usually, such a density has to be "close" to the target density in order to yield numerically accurate results...
Persistent link: https://www.econbiz.de/10010731729
Likelihoods and posteriors of econometric models with strong endogeneity and weak instruments may exhibit rather non-elliptical contours in the parameter space. This feature also holds for cointegration models when near non-stationarity occurs and determining the number of cointegrating...
Persistent link: https://www.econbiz.de/10010731791
In Hoogerheide, Kaashoek and Van Dijk (2002) the class of neural network sampling methods is introduced to sample from a target (posterior) distribution that may be multi-modal or skew, or exhibit strong correlation among the parameters. In these methods the neural network is used as an...
Persistent link: https://www.econbiz.de/10010731804
Cyclical components in economic time series are analysed in a Bayesian framework, thereby allowing prior notions about periodicity to be used. The method is based on a general class of unobserved component models that allow relatively smooth cycles to be extracted. Posterior densities of...
Persistent link: https://www.econbiz.de/10010731918