Showing 1 - 10 of 21
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment,...
Persistent link: https://www.econbiz.de/10011337681
In the first part of the paper, we consider estimation and inference on policy relevant treatment effects, such as local average and local quantile treatment effects, in a data-rich environment where there may be many more control variables available than there are observations. In addition to...
Persistent link: https://www.econbiz.de/10010227452
In this paper, we consider estimation of general modern moment-condition problems in econometrics in a data-rich environment where there may be many more control variables available than there are observations. The framework we consider allows for a continuum of target parameters and for...
Persistent link: https://www.econbiz.de/10010388633
Persistent link: https://www.econbiz.de/10011692431
This article introduces lassopack, a suite of programs for regularized regression in Stata. lassopack implements lasso, square-root lasso, elastic net, ridge regression, adaptive lasso and post-estimation OLS. The methods are suitable for the high-dimensional setting where the number of...
Persistent link: https://www.econbiz.de/10011972491
This paper proposes a post-model selection inference procedure, called targeted undersmoothing, designed to construct uniformly valid confidence sets for functionals of sparse high-dimensional models, including dense functionals that may depend on many or all elements of the high-dimensional...
Persistent link: https://www.econbiz.de/10011824420
Persistent link: https://www.econbiz.de/10014293243
This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. We introduce two new stacking approaches for DDML: short-stacking exploits the cross-fitting step of DDML to...
Persistent link: https://www.econbiz.de/10014454715
We develop a multi-risk SIR model (MR-SIR) where infection, hospitalization and fatality rates vary between groups-in particular between the "young", "the middleaged" and the "old". Our MR-SIR model enables a tractable quantitative analysis of optimal policy similar to those already developed in...
Persistent link: https://www.econbiz.de/10012621091