Showing 1 - 10 of 1,137
This paper shows how a weighted average of a forward and reverse Jackknife IV estimator (JIVE) yields estimators that are robust against heteroscedasticity and many instruments. These estimators, called HFUL (Heteroscedasticity robust Fuller) and HLIM (Heteroskedasticity robust limited...
Persistent link: https://www.econbiz.de/10009766699
Estimation of polynomial regression equations in one error-ridden variable and a number of error-free regressors, as well as an instrument set for the former is considered. Procedures for identification, operating on moments up to a certain order, are elaborated for single- and multi-equation...
Persistent link: https://www.econbiz.de/10011636052
In a recent paper, Hausman et al. (2012) propose a new estimator, HFUL (Heteroscedasticity robust Fuller), for the linear model with endogeneity. This estimator is consistent and asymptotically normally distributed in the many instruments and many weak instruments asymptotics. Moreover, this...
Persistent link: https://www.econbiz.de/10009766695
Persistent link: https://www.econbiz.de/10014427624
are explored by Monte Carlo (MC) simulations. Two kinds of estimators are compared with respect to bias, instrument (IV … estimators' bias and other properties of their distributions of changes in the signal-noise variance ratio, the length of the …
Persistent link: https://www.econbiz.de/10010330209
This paper generalizes the approach to estimating a first-order spatial autoregressive model with spatial autoregressive disturbances (SARAR(1,1)) in a cross-section with heteroskedastic innovations by Kelejian and Prucha (2008) to the case of spatial autoregressive models with spatial...
Persistent link: https://www.econbiz.de/10010264403
One important goal of this study is to develop a methodology of inference for a widely used Cliff-Ord type spatial model containing spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing for unknown heteroskedasticity in the innovations. We first...
Persistent link: https://www.econbiz.de/10010264476
In this paper we specify a linear Cliff and Ord-type spatial model. The model allows for spatial lags in the dependent variable, the exogenous variables, and disturbances. The innovations in the disturbance process are assumed to be heteroskedastic with an unknown form. We formulate a multi-step...
Persistent link: https://www.econbiz.de/10010264508
The principal purpose of this paper is to describe the performance of generalized empirical likelihood (GEL) methods for time series instrumental variable models specified by nonlinear moment restrictions when identification may be weak. The paper makes two main contributions. Firstly, we show...
Persistent link: https://www.econbiz.de/10010318480
We introduce test statistics based on generalized empirical likelihood methods that can be used to test simple hypotheses involving the unknown parameter vector in moment condition time series models. The test statistics generalize those in Guggenberger and Smith (2005) from the i.i.d. to the...
Persistent link: https://www.econbiz.de/10010318483