Showing 1 - 10 of 10
Persistent link: https://www.econbiz.de/10011430763
Persistent link: https://www.econbiz.de/10011476086
This study presents a multiple-input multiple-output (MIMO) approach for multi-step-ahead time series prediction with a Gaussian process regression (GPR) model. We assess the forecasting performance of the GPR model with respect to several neural network architectures. The MIMO setting allows...
Persistent link: https://www.econbiz.de/10012959523
This paper aims to compare the performance of different Artificial Neural Networks techniques for tourist demand forecasting. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron, a radial basis function and an Elman network. We also evaluate the...
Persistent link: https://www.econbiz.de/10013045968
This study compares the performance of different Artificial Neural Networks models for tourist demand forecasting in a multiple-output framework. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron network, a radial basis function network and an...
Persistent link: https://www.econbiz.de/10013045969
Persistent link: https://www.econbiz.de/10011623524
Persistent link: https://www.econbiz.de/10011415030
Persistent link: https://www.econbiz.de/10012261644
Persistent link: https://www.econbiz.de/10010412358
The objective of this paper is to compare different forecasting methods for the short run forecasting of Business Survey Indicators. We compare the forecasting accuracy of Artificial Neural Networks (ANN) vs. three different time series models: autoregressions (AR), autoregressive integrated...
Persistent link: https://www.econbiz.de/10013045972