Showing 1 - 10 of 22
This paper derives a multivariate local Whittle estimator for the memory parameter of a possibly long memory process and the fractional cointegration vector robust to low frequency contaminations. This estimator as many other local Whittle based procedures requires a priori knowledge of the...
Persistent link: https://www.econbiz.de/10012105358
Persistent link: https://www.econbiz.de/10012315624
There are various competing procedures to determine whether fractional cointegration is present in a multivariate time series, but no standard approach has emerged. We provide a synthesis of this literature and conduct a detailed comparative Monte Carlo study to guide empirical researchers in...
Persistent link: https://www.econbiz.de/10011957940
Persistent link: https://www.econbiz.de/10011974604
In this paper we consider the asymptotic distribution of S -estimators in the nonlinear regression model with long-memory error terms. S - estimators are robust estimates with a high breakdown point and good asymptotic properties in the i.i.d case. They are constructed for linear regression. In...
Persistent link: https://www.econbiz.de/10009792344
We investigate the behaviour of S - estimators in the linear regression model, when the error terms are long-memory Gaussian processes. It turns out that under mild regularity conditions S - estimators are still normally distributed with a similar variance - covariance structure as in the i.i.d...
Persistent link: https://www.econbiz.de/10010467725
Persistent link: https://www.econbiz.de/10001439129
Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010324063
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10010324084
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10010316534