Showing 1 - 10 of 459
average treatment effects, based on forecasting counterfactuals using a short time series of pre-treatment data. We show that … counterfactuals. Basing the forecasts on a model can introduce misspecification bias and does not necessarily improve performance even …
Persistent link: https://www.econbiz.de/10014335601
This paper develops a nonparametric methodology for treatment evaluation with multiple outcome periods under treatment endogeneity and missing outcomes. We use instrumental variables, pre-treatment characteristics, and short-term (or intermediate) outcomes to identify the average treatment...
Persistent link: https://www.econbiz.de/10010249397
We show that the main nonparametric identification finding of Abbring and Van den Berg (2003b, Econometrica) for the effect of a timing-chosen treatment on an event duration of interest does not hold. The main problem is that the identification is based on the competing-risks identification...
Persistent link: https://www.econbiz.de/10011543606
This paper presents a weighted optimization framework that unifies the binary, multivalued, and continuous treatment - as well as mixture of discrete and continuous treatment - under a unconfounded treatment assignment. With a general loss function, the framework includes the average, quantile,...
Persistent link: https://www.econbiz.de/10012598504
We provide evidence on the least biased ways to identify causal effects in situations where there are multiple outcomes that all depend on the same endogenous regressor and a reasonable but potentially contaminated instrumental variable that is available. Simulations provide suggestive evidence...
Persistent link: https://www.econbiz.de/10012503996
In a recent contribution, Oster (2019) has proposed a method to generate bounds on treatment effects in the presence of unobservable confounders. The method can only be implemented if a crucial problem of non-uniqueness is addressed. In this paper I demonstrate that one of the proposed methods...
Persistent link: https://www.econbiz.de/10012490376
This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the...
Persistent link: https://www.econbiz.de/10011760113
This paper discusses the evaluation problem using observational data when the timing of treatment is an outcome of a stochastic process. We show that the duration framework in discrete time provides a fertile ground for effect evaluations. We suggest easy-to-use nonparametric survival function...
Persistent link: https://www.econbiz.de/10010261825
In this paper nonparametric instrumental variable estimation of local average treatment effects (LATE) is extended to incorporate confounding covariates. Estimation of local average treatment effects is appealing since their identification relies on much weaker assumptions than the...
Persistent link: https://www.econbiz.de/10010262665
In this paper, the regression discontinuity design (RDD) is generalized to account for differences in observed covariates X in a fully nonparametric way. It is shown that the treatment effect can be estimated at the rate for one-dimensional nonparametric regression irrespective of the dimension...
Persistent link: https://www.econbiz.de/10010268328