Showing 1 - 10 of 3,739
This paper develops methods of inference for nonparametric and semiparametric parameters defined by conditional moment inequalities and/or equalities. The parameters need not be identified. Confidence sets and tests are introduced. The correct uniform asymptotic size of these procedures is...
Persistent link: https://www.econbiz.de/10013117347
This paper develops methods of inference for nonparametric and semiparametric parameters defined by conditional moment inequalities and/or equalities. The parameters need not be identified. Confidence sets and tests are introduced. The correct uniform asymptotic size of these procedures is...
Persistent link: https://www.econbiz.de/10013086470
This paper develops methods of inference for nonparametric and semiparametric parameters defined by conditional moment inequalities and/or equalities. The parameters need not be identified. Confidence sets and tests are introduced. The correct uniform asymptotic size of these procedures is...
Persistent link: https://www.econbiz.de/10013074673
We study the problem of estimating the parameters of a linear median regression without any assumption on the shape of the error distribution -- including no condition on the existence of moments -- allowing for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions,...
Persistent link: https://www.econbiz.de/10012962776
Persistent link: https://www.econbiz.de/10009242190
We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step, but retain a fully nonparametric specification in the first step. Such estimators exist in many economic applications, including a wide range of missing data and...
Persistent link: https://www.econbiz.de/10013076810
Persistent link: https://www.econbiz.de/10012110304
We propose a nonparametric inference method for causal effects of continuous treatment variables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance parameters. Our simple kernel-based double debiased machine learning (DML) estimators for the average...
Persistent link: https://www.econbiz.de/10012111514
We propose a nonparametric inference method for causal effects of continuous treatment variables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance parameters. Our simple kernel-based double debiased machine learning (DML) estimators for the average...
Persistent link: https://www.econbiz.de/10012137890
Kotlarski's identity has been widely used in applied economic research based on repeated-measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel...
Persistent link: https://www.econbiz.de/10012432813