Showing 1 - 5 of 5
Additive regression models have a long history in nonparametric regression. It is well known that these models can be estimated at the one dimensional rate. Until recently, however, these models have been estimated by a backfitting procedure. Although the procedure converges quickly, its...
Persistent link: https://www.econbiz.de/10010956556
In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which...
Persistent link: https://www.econbiz.de/10010956576
Motivated by a nonparametric GARCH model we consider nonparametric additive regression and autoregression models in the special case that the additive components are linked parametrically. We show that the parameter can be estimated with parametric rate and give the normal limit. Our procedure...
Persistent link: https://www.econbiz.de/10010983568
Stuetzle and Mittal (1979) for ordinary nonparametric kernel regression and Kauermann and Tutz (1996) for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators, without the need for devices such as second derivative...
Persistent link: https://www.econbiz.de/10010983807
We consider an additive model with second order interaction terms. It is shown how the components of this model can be estimated using marginal integration, and the asymptotic distribution of the estimators is derived. Moreover, two test statistics for testing the presence of interactions are...
Persistent link: https://www.econbiz.de/10010983831