Showing 1 - 4 of 4
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of...
Persistent link: https://www.econbiz.de/10005249720
We study the asymptotic properties of the Bernstein estimator for unbounded density copula functions. We show that the estimator converges to infinity at the corner. We establish its relative convergence when the copula is unbounded and we provide the uniform strong consistency of the estimator...
Persistent link: https://www.econbiz.de/10010547881
We propose a nonparametric estimator and a nonparametric test for Granger causality measures that quantify linear and nonlinear Granger causality in distribution between random variables. We first show how to write the Granger causality measures in terms of copula densities. We suggest a...
Persistent link: https://www.econbiz.de/10010547882
We propose a nonparametric estimator and a nonparametric test for Granger causality measures that quantify linear and nonlinear Granger causality in distribution between random variables. We first show how to write the Granger causality measures in terms of copula densities. We suggest a...
Persistent link: https://www.econbiz.de/10010551422