Showing 1 - 7 of 7
Persistent link: https://www.econbiz.de/10012050820
Persistent link: https://www.econbiz.de/10011895059
In the common nonparametric regression model the problem of testing for the parametric form of the conditional variance is considered. A stochastic process based on the difference between the empirical processes obtained from the standardized nonparametric residuals under the null hypothesis (of...
Persistent link: https://www.econbiz.de/10009216917
Times between consecutive events are often of interest in medical studies. Usually the events represent different states of the disease process and are modeled using multi-state models. This paper introduces and studies a feasible estimation method for the transition probabilities in a...
Persistent link: https://www.econbiz.de/10010998487
Persistent link: https://www.econbiz.de/10008469413
Consider the semiparametric transformation model <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\Lambda _{\theta _o}(Y)=m(X)+\varepsilon $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <msub> <mi mathvariant="normal">Λ</mi> <msub> <mi mathvariant="italic">θ</mi> <mi>o</mi> </msub> </msub> <mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mi>m</mi> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi mathvariant="italic">ε</mi> </mrow> </math> </EquationSource> </InlineEquation>, where <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\theta _o$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi mathvariant="italic">θ</mi> <mi>o</mi> </msub> </math> </EquationSource> </InlineEquation> is an unknown finite dimensional parameter, the functions <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$\Lambda _{\theta _o}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi mathvariant="normal">Λ</mi> <msub> <mi mathvariant="italic">θ</mi> <mi>o</mi> </msub> </msub> </math> </EquationSource> </InlineEquation> and <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$m$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>m</mi> </math> </EquationSource> </InlineEquation> are...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10011152094
We consider a nonparametric regression model where the response Y and the covariate X are both functional (i.e. valued in some infinite-dimensional space). We define a kernel type estimator of the regression operator and we first establish its pointwise asymptotic normality. The double...
Persistent link: https://www.econbiz.de/10010572285