Showing 1 - 10 of 13
We define a dynamic and self-adjusting mixture of Gaussian Graphical Models to cluster financial returns, and provide a new method for extraction of nonparametric estimates of dynamic alphas (excess return) and betas (to a choice set of explanatory factors) in a multivariate setting. This...
Persistent link: https://www.econbiz.de/10011505836
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems.To...
Persistent link: https://www.econbiz.de/10012968298
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan and Gneiting (2010) and...
Persistent link: https://www.econbiz.de/10013023291
Network models represent a useful tool to describe the complex set of financial relationships among heterogeneous firms in the system. In this paper, we propose a new semiparametric model for temporal multilayer causal networks with both intra- and inter-layer connectivity. A Bayesian model with...
Persistent link: https://www.econbiz.de/10013241977
Persistent link: https://www.econbiz.de/10012499500
Persistent link: https://www.econbiz.de/10012303895
Persistent link: https://www.econbiz.de/10011629460
Persistent link: https://www.econbiz.de/10011631783
Persistent link: https://www.econbiz.de/10012121230
We propose a nonparametric Bayesian approach for conducting inference on probabilistic surveys. We use this approach to study whether U.S. Survey of Professional Forecasters density projections for output growth and inflation are consistent with the noisy rational expectations hypothesis. We...
Persistent link: https://www.econbiz.de/10013336345