Showing 1 - 5 of 5
An Organic Rankine Cycle for diesel engine waste heat recovery is modeled and optimized. The design parameters are nominal capacity of diesel engine, diesel operating partial load, evaporator pressure, condenser pressure and refrigerant mass flow rate. In addition four refrigerants including...
Persistent link: https://www.econbiz.de/10010809924
A design method for ORCs is newly proposed to fully couple the ORC with the heat source. The heat source is characterized by the mass flow rate, inlet and outlet heat carrier fluid temperatures. Example cases were performed to study the optimal running parameters for ORCs with constraint of...
Persistent link: https://www.econbiz.de/10010702689
This paper presents a theoretical framework for the energy and exergy evaluation of a basic as well as three modified Organic Rankine Cycles (ORCs). The modified ORCs considered incorporating turbine bleeding, regeneration and both of them. The results demonstrate that evaporator has major...
Persistent link: https://www.econbiz.de/10011937639
This paper presents a theoretical framework for the energy and exergy evaluation of a basic as well as three modified Organic Rankine Cycles (ORCs). The modified ORCs considered incorporating turbine bleeding, regeneration and both of them. The results demonstrate that evaporator has major...
Persistent link: https://www.econbiz.de/10011863061
Higher efficiencies and optimal utilization of geothermal energy require a careful selection of the working fluid in organic Rankine cycles (ORC). The objectives of this study are to analyze and explain the effect of using alternative dry fluids on the efficiencies of the ORC and compare them...
Persistent link: https://www.econbiz.de/10010805260