Showing 1 - 5 of 5
We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap...
Persistent link: https://www.econbiz.de/10011441857
We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap...
Persistent link: https://www.econbiz.de/10011490564
Persistent link: https://www.econbiz.de/10011594405
We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap...
Persistent link: https://www.econbiz.de/10010986691
We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap...
Persistent link: https://www.econbiz.de/10011070846