Showing 1 - 10 of 22,274
The popular scholarly exercise of evaluating exchange rate forecasting models relative to a random walk was stimulated by the well-cited Meese and Rogoff (1983) paper. Practitioners who construct quantitative models for trading exchange rates approach forecasting from a different perspective....
Persistent link: https://www.econbiz.de/10009743826
We establish the out-of-sample predictability of monthly exchange rate changes via machine learning techniques based on 70 predictors capturing country characteristics, global variables, and their interactions. To guard against overfitting, we use the elastic net to estimate a high-dimensional...
Persistent link: https://www.econbiz.de/10012847704
Persistent link: https://www.econbiz.de/10009782578
This paper proposes a novel approach to the combination of conditional covariance matrix forecasts based on the use of the Generalized Method of Moments (GMM). It is shown how the procedure can be generalized to deal with large dimensional systems by means of a two-step strategy. The finite...
Persistent link: https://www.econbiz.de/10003796201
We examine the impact of temporal and portfolio aggregation on the quality of Value-at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio of stocks, bonds and alternative investments. The VaR forecasts are constructed based on daily, weekly or biweekly...
Persistent link: https://www.econbiz.de/10011431503
Is univariate or multivariate modelling more effective when forecasting the market risk of stock portfolios? We examine this question in the context of forecasting the one-week-ahead Expected Shortfall of a portfolio invested in the Fama-French and momentum factors. Apply ingextensive tests and...
Persistent link: https://www.econbiz.de/10012898954
We examine the impact of temporal and portfolio aggregation on the quality of Value-at-Risk (VaR) forecasts over a horizon of ten trading days for a well-diversified portfolio of stocks, bonds and alternative investments. The VaR forecasts are constructed based on daily, weekly or biweekly...
Persistent link: https://www.econbiz.de/10012970357
This study predicts stock market volatility and applies them to the standard problem in finance, namely, asset allocation. Based on machine learning and model averaging approaches, we integrate the drivers’ predictive information to forecast market volatilities. Using various evaluation...
Persistent link: https://www.econbiz.de/10013404229
Motivated by the Basel 3 regulations, recent studies have considered joint forecasts of Value-at-Risk and Expected Shortfall. A large family of scoring functions can be used to evaluate forecast performance in this context. However, little intuitive or empirical guidance is currently available,...
Persistent link: https://www.econbiz.de/10011663466
We propose direct multiple time series models for predicting high dimensional vectors of observable realized global minimum variance portfolio (GMVP) weights computed based on high-frequency intraday returns. We apply Lasso regression techniques, develop a class of multiple AR(FI)MA models for...
Persistent link: https://www.econbiz.de/10014352129