Showing 1 - 10 of 804
This paper considers Bayesian regression with normal and doubleexponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10010295821
This paper considers Bayesian regression with normal and doubleexponential priors as forecasting methods based on large panels of time series. We show that, empirically, these forecasts are highly correlated with principal component forecasts and that they perform equally well for a wide range...
Persistent link: https://www.econbiz.de/10011604746
Suppose a fund manager uses predictors in changing port-folio allocations over time. How does predictability translate into portfolio decisions? To answer this question we derive a new model within the Bayesian framework, where managers are assumed to modulate the systematic risk in part by...
Persistent link: https://www.econbiz.de/10011604927
This paper shows that Vector Autoregression with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results by De Mol, Giannone, and Reichlin (2008) and show that, when the degree of shrinkage is set in relation to the cross-sectional dimension, the forecasting...
Persistent link: https://www.econbiz.de/10011605012
Inference on the long-run properties of a Vector Autoregression (VAR) consisting wholly of I(1) variables are made using Bayesian methods. In particular, the implications on the forecast and impulse response function distributions of directly estimating and restricting the drift parameters of...
Persistent link: https://www.econbiz.de/10010318363
The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance with the most promising existing alternatives, namely, factor models, large scale...
Persistent link: https://www.econbiz.de/10010284099
This paper shows that Vector Autoregression with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results by De Mol, Giannone, and Reichlin (2008) and show that, when the degree of shrinkage is set in relation to the cross-sectional dimension, the forecasting...
Persistent link: https://www.econbiz.de/10003825832
We propose a new algorithm which allows easy estimation of Vector Autoregressions (VARs) featuring asymmetric priors and time varying volatilities, even when the cross sectional dimension of the system N is particularly large. The algorithm is based on a simple triangularisation which allows to...
Persistent link: https://www.econbiz.de/10011389735
This paper examines whether the presence of parameter instabilities in dynamic stochastic general equilibrium (DSGE) models affects their forecasting performance. We apply this analysis to medium-scale DSGE models with and without financial frictions for the US economy. Over the forecast period...
Persistent link: https://www.econbiz.de/10011349997
Similar to Ingram and Whiteman (1994), De Jong et al. (1993) and Del Negro and Schorfheide (2004) this study proposes a methodology of constructing Dynamic Stochastic General Equilibrium (DSGE) consistent prior distributions for Bayesian Vector Autoregressive (BVAR) models. The moments of the...
Persistent link: https://www.econbiz.de/10010339762