Showing 1 - 10 of 27
Persistent link: https://www.econbiz.de/10010351424
Persistent link: https://www.econbiz.de/10014450260
Persistent link: https://www.econbiz.de/10012116653
Persistent link: https://www.econbiz.de/10011618511
Persistent link: https://www.econbiz.de/10014465169
Persistent link: https://www.econbiz.de/10014295354
In this paper we propose a methodology to estimate a dynamic factor model on data sets with an arbitrary pattern of missing data. We modify the Expectation Maximisation (EM) algorithm as proposed for a dynamic factor model by Watson and Engle (1983) to the case with general pattern of missing...
Persistent link: https://www.econbiz.de/10011605235
We develop a method for directly modeling cointegrated multivariate time series that are observed in mixed frequencies. We regard lower-frequency data as regularly (or irregularly) missing and treat them with higher-frequency data by adopting a state-space model. This utilizes the structure of...
Persistent link: https://www.econbiz.de/10010264085
We introduce a high-dimensional structural time series model, where co-movement between the components is due to common factors. A two-step estimation strategy is presented, which is based on principal components in differences in a first step and state space methods in a second step. The...
Persistent link: https://www.econbiz.de/10011309972
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361