Showing 1 - 10 of 8,529
The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed...
Persistent link: https://www.econbiz.de/10011378719
The paper contributes to the rare literature modeling term structure of crude oil markets. We explain term structure of crude oil prices using dynamic Nelson-Siegel model, and propose to forecast them with the generalized regression framework based on neural networks. The newly proposed...
Persistent link: https://www.econbiz.de/10013024184
Deep learning has substantially advanced the state of the art in computer vision, natural language processing, and other fields. The paper examines the potential of deep learning for exchange rate forecasting. We systematically compare long short- term memory networks and gated recurrent units...
Persistent link: https://www.econbiz.de/10012827850
Predicting the number of outstanding claims (IBNR) is a central problem in actuarial loss reserving. Classical approaches like the Chain Ladder method rely on aggregating the available data in form of loss triangles, thereby wasting potentially useful additional claims information. A new...
Persistent link: https://www.econbiz.de/10013323137
Economic policymaking relies upon accurate forecasts of economic conditions. Current methods for unconditional forecasting are dominated by inherently linear models that exhibit model dependence and have high data demands. We explore deep neural networks as an opportunity to improve upon...
Persistent link: https://www.econbiz.de/10012946449
In asset pricing, most studies focus on finding new factors such as macroeconomic factors or firm characteristics to explain risk premium. Investigating whether these factors are useful in forecasting stock returns remains active research in the field of finance and computer science. This paper...
Persistent link: https://www.econbiz.de/10014235825
We review key aspects of forecasting using nonlinear models. Because economic models are typically misspecified, the resulting forecasts provide only an approximation to the best possible forecast. Although it is in principle possible to obtain superior approximations to the optimal forecast...
Persistent link: https://www.econbiz.de/10014023697
In this paper we present the Radial Basis Neural Network Function. We examine some simple numerical examples of time-series in economics and finance. The forecasting performance is significant superior, especially in financial time-series, to traditional econometric modeling indicating that...
Persistent link: https://www.econbiz.de/10013138753
The study proposes and a family of regime switching GARCH neural network models to model volatility. The proposed MS-ARMA-GARCH-NN models allow MS type regime switching in both the conditional mean and conditional variance for time series and further augmented with artificial neural networks to...
Persistent link: https://www.econbiz.de/10013090501
We study the problem of obtaining an accurate forecast of the unemployment claims using online search data. The motivation for this study arises from the fact that there is a need for nowcasting or providing a reliable short-term estimate of the unemployment rate. The data regarding initial...
Persistent link: https://www.econbiz.de/10013243156