Showing 1 - 10 of 202
We examine recursive out-of-sample forecasting of monthly postwarU.S. core inflation and log price levels. We use theautoregressive fractionally integrated moving average model withexplanatory variables (ARFIMAX). Our analysis suggests asignificant explanatory power of leading indicators...
Persistent link: https://www.econbiz.de/10010324970
We examine recursive out-of-sample forecasting of monthly postwarU.S. core inflation and log price levels. We use theautoregressive fractionally integrated moving average model withexplanatory variables (ARFIMAX). Our analysis suggests asignificant explanatory power of leading indicators...
Persistent link: https://www.econbiz.de/10011316885
Persistent link: https://www.econbiz.de/10001569637
We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the...
Persistent link: https://www.econbiz.de/10010325388
Persistent link: https://www.econbiz.de/10003764109
Persistent link: https://www.econbiz.de/10002503685
Persistent link: https://www.econbiz.de/10003808308
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10011373810
We explore a periodic analysis in the context of unobserved components time series models that decompose time series into components of interest such as trend and seasonal. Periodic time series models allow dynamic characteristics to depend on the period of the year, month, week or day. In the...
Persistent link: https://www.econbiz.de/10011342560
Persistent link: https://www.econbiz.de/10011550112