Showing 1 - 10 of 2,348
We extend the results of De Luca et al. (2021) to inference for linear regression models based on weighted-average least squares (WALS), a frequentist model averaging approach with a Bayesian flavor. We concentrate on inference about a single focus parameter, interpreted as the causal effect of...
Persistent link: https://www.econbiz.de/10012510747
Persistent link: https://www.econbiz.de/10009724346
Persistent link: https://www.econbiz.de/10009720705
Persistent link: https://www.econbiz.de/10009722969
Persistent link: https://www.econbiz.de/10009756320
We develop a non-linear forecast combination rule based on copulas that incorporate the dynamic interaction between individual predictors. This approach is optimal in the sense that the resulting combined forecast produces the highest discriminatory power as measured by the receiver operating...
Persistent link: https://www.econbiz.de/10010475341
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10011383033
We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features in order to provide more accurate and complete density nowcasts. The combination weights are latent random...
Persistent link: https://www.econbiz.de/10010465155
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of Aitchinson's geometry of the...
Persistent link: https://www.econbiz.de/10011295701