Showing 1 - 10 of 2,549
Public programs often use statistical profiling to assess the risk that applicants will become long-term dependent on the program. The literature uses linear probability models and (Cox) proportional hazard models to predict duration outcomes. These either focus on one threshold duration or...
Persistent link: https://www.econbiz.de/10011391532
We propose exible models for multivariate realized volatility dynamics which involve generalizations of the Box-Cox transform to the matrix case. The matrix Box-Cox model of realized covariances (MBC-RCov) is based on transformations of the covariance matrix eigenvalues, while for the Box-Cox...
Persistent link: https://www.econbiz.de/10010344500
Mortality is different across countries, states and regions. Several empirical research works however reveal that mortality trends exhibit a common pattern and show similar structures across populations. The key element in analyzing mortality rate is a time-varying indicator curve. Our main...
Persistent link: https://www.econbiz.de/10011489251
This paper considers the estimation of a semi-parametric single-index regression model that allows for nonlinear predictive relationships. This model is useful for predicting financial asset returns, whose observed behavior is described by a stationary process, when the multiple non-stationary...
Persistent link: https://www.econbiz.de/10012822931
Let X = (X1,...,Xp) be a stochastic vector having joint density function fX(x) with partitions X1 = (X1,...,Xk) and X2 = (Xk 1,...,Xp). A new method for estimating the conditional density function of X1 given X2 is presented. It is based on locally Gaussian approximations, but simplified in...
Persistent link: https://www.econbiz.de/10012977928
We propose a hybrid penalized averaging for combining parametric and non-parametric quantile forecasts when faced with a large number of predictors. This approach goes beyond the usual practice of combining conditional mean forecasts from parametric time series models with only a few predictors....
Persistent link: https://www.econbiz.de/10012859663
When estimating Loss Given Default (LGD) parameters using a workout approach, i.e. discounting cash flows over the workout period, the problem arises of how to take into account partial recoveries from incomplete work-outs. The simplest approach would see LGD based on complete recovery profiles...
Persistent link: https://www.econbiz.de/10013046479
Consider forecasting the economic variable Y_{t h} with predictors X_{t}, where h is the forecast horizon. This paper introduces a semiparametric method that generates forecast intervals of Y_{t h}|X_{t} from point forecast models. First, the point forecast model is estimated, thereby taking...
Persistent link: https://www.econbiz.de/10012756248
This paper proposes a new combined semiparametric estimator of the conditional variance that takes the product of a parametric estimator and a nonparametric estimator based on machine learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least squares...
Persistent link: https://www.econbiz.de/10012814196
In this paper, we propose three new predictive models: the multi-step nonparametric predictive regression model and the multi-step additive predictive regression model, in which the predictive variables are locally stationary time series; and the multi-step time-varying coefficient predictive...
Persistent link: https://www.econbiz.de/10011775136