Showing 1 - 10 of 2,736
We develop a non-linear forecast combination rule based on copulas that incorporate the dynamic interaction between individual predictors. This approach is optimal in the sense that the resulting combined forecast produces the highest discriminatory power as measured by the receiver operating...
Persistent link: https://www.econbiz.de/10010475341
We demonstrate that the parameters controlling skewness and kurtosis in popular equity return models estimated at daily frequency can be obtained almost as precisely as if volatility is observable by simply incorporating the strong information content of realized volatility measures extracted...
Persistent link: https://www.econbiz.de/10013128339
We use a data-mining bootstrap procedure to investigate the predictability test in the eight Asia-Pacific regional stock markets using in-sample and out-of-sample forecasting models. We address ourselves to the data-mining bias issues by using the data-mining bootstrap procedure proposed by...
Persistent link: https://www.econbiz.de/10012844506
This paper investigates inference and volatility forecasting using a Markov switching heteroscedastic model with a fat-tailed error distribution to analyze asymmetric effects on both the conditional mean and conditional volatility of financial time series. The motivation for extending the Markov...
Persistent link: https://www.econbiz.de/10013159442
The paper compares one-period ahead forecasting performance of linear vector-autoregressive (VAR) models and single-equation Markov-switching (MS) models for two cases: when leading information is available and when it is not. The results show that single-equation MS models tend to perform...
Persistent link: https://www.econbiz.de/10013147524
Persistent link: https://www.econbiz.de/10012519661
Persistent link: https://www.econbiz.de/10012056596
Persistent link: https://www.econbiz.de/10013441987
To improve the dynamic assessment of risks of speculative assets, we apply a Markov switching MGARCH approach to portfolio forecasting. More specifically, we take advantage of the flexible Markov switching copula multivariate GARCH (MS-C-MGARCH) model of Fülle and Herwartz (2021). As an...
Persistent link: https://www.econbiz.de/10013405757
In this article, the Universal Approximation Theorem of Artificial Neural Networks (ANNs) is applied to the SABR stochastic volatility model in order to construct highly efficient representations. Initially, the SABR approximation of Hagan et al. [2002] is considered, then a more accurate...
Persistent link: https://www.econbiz.de/10012907596