Showing 1 - 3 of 3
In this paper we introduce two general non-parametric first-order stationary time-series models for which marginal (invariant) and transition distributions are expressed as infinite-dimensional mixtures. That feature makes them the first Bayesian stationary fully non-parametric models developed...
Persistent link: https://www.econbiz.de/10010322563
In this paper we introduce two general non-parametric first-order stationary time-series models for which marginal (invariant) and transition distributions are expressed as infinite-dimensional mixtures. That feature makes them the first Bayesian stationary fully non-parametric models developed...
Persistent link: https://www.econbiz.de/10009319360
This paper develops nonparametric estimation for discrete choice models based on the Mixed Multinomial Logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an...
Persistent link: https://www.econbiz.de/10004980490