Showing 1 - 10 of 99
In spite of the widespread use of generalized additive models (GAMs), there is no well established methodology for simultaneous inference and variable selection for the components of GAM. There is no doubt that both, inference on the marginal component functions and their selection, are...
Persistent link: https://www.econbiz.de/10010230559
In spite of the widespread use of generalized additive models (GAMs), there is no well established methodology for simultaneous inference and variable selection for the components of GAM. There is no doubt that both, inference on the marginal component functions and their selection, are...
Persistent link: https://www.econbiz.de/10012966541
Generalized additive models (GAM) are multivariate nonparametric regressions for non-Gaussian responses including binary and count data. We propose a spline-backfitted kernel (SBK) estimator for the component functions. Our results are for weakly dependent data and we prove oracle efficiency....
Persistent link: https://www.econbiz.de/10008905999
Persistent link: https://www.econbiz.de/10003968457
Generalized additive models (GAM) are multivariate nonparametric regressions for non-Gaussian responses including binary and count data. We propose a spline-backfitted kernel (SBK) estimator for the component functions. Our results are for weakly dependent data and we prove oracle efficiency....
Persistent link: https://www.econbiz.de/10012966282
Persistent link: https://www.econbiz.de/10000168636
Persistent link: https://www.econbiz.de/10003323041
Persistent link: https://www.econbiz.de/10003375980
Additive modelling has been widely used in nonparametric regression to circumvent the "curse of dimensionality", by reducing the problem of estimating a multivariate regression function to the estimation of its univariate components. Estimation of these univariate functions, however, can suffer...
Persistent link: https://www.econbiz.de/10009626746
Additive modelling is known to be useful for multivariate nonparametric regression as it reduces the complexity of problem to the level of univariate regression. This usefulness could be compromised if the data set was contaminated by outliers whose detection and removal are particularly...
Persistent link: https://www.econbiz.de/10009627283